Category: BGP

  • Implementing ASPA validation in the bird2 filter language

    When we looked at route authorization, we discussed how Resource Public Key Infrastructure (RPKI)—or more specifically, route origin authorizations—could prevent some types of BGP hijacking, but not all of it. We also mentioned that Autonomous System Provider Authorization (ASPA), a draft standard that extends RPKI to also authenticate the AS path, could prevent unauthorized networks from acting as upstreams. (For more information about upstreams, see my post on autonomous systems).

    Essentially, an ASPA is a type of resource certificate in RPKI, just like Route Origin Authorizations (ROAs), which describes which ASNs are allowed to announce a certain IP prefix. However, ASPAs describe which networks are allowed to act as upstreams for any given AS.

    There are two parts to deploying ASPA:

    1. Creating an ASPA resource certificate for your network and publishing it, so that everyone knows who your upstreams are; and
    2. Checking routes you receive from other networks, rejecting the ones that are invalid according to ASPA.

    The first part is fairly straightforward, with RPKI software like Krill offering support out of the box. One simply has to set up delegated RPKI with the RIR that issued the ASN. I’ll give a quick overview of the process, but it’s not the main focus today.

    Unfortunately, the second part is less than trivial, since ASPA is just a draft standard, not widely supported by router software. Only OpenBGPd, which I don’t use, has implemented experimental support. However, that doesn’t mean we can’t use ASPA today—we simply need to implement it ourselves. Thus, I embarked on this journey to implement ASPA filtering in the bird 2 filter language.

    (Read more...)
  • On the Inter-RIR transfer of AS200351 from RIPE NCC to ARIN

    As you might know already, on May 24, 2024, at the RIPE NCC General Meeting, model C for the 2025 charging scheme was adopted. I will not go into the details here, such as the lack of an option to preserve the status quo1, but model C involved adding an annual fee of 50 EUR per ASN, billed to the sponsoring LIR. This meant that the sponsoring LIR for AS200351 would be forced to bill me annually for at least 50 EUR for the ASN, plus some administrative overhead and fees for payment processing2.

    To protest against this fee and save myself some money, I decided to transfer AS200351 to ARIN, which charges no extra for me to hold an additional ASN, given that my current service category at ARIN allows up to 3 ASNs, and I only had one ASN already with ARIN: AS54148.

    And so, on June 2nd, I decided to initiate the process to transfer AS200351, which was in active use, to ARIN. As it turned out, this became an ordeal, especially on the RIPE NCC end. Since I’ve been asked many times about the process, I am writing this post to share my experience, so that you know what to expect.

    (Read more...)
  • On BGP Route Selection and High Availability via Anycast

    Earlier, we discussed how IP addresses and route authorizations work, before we took a break to talk about how the RIRs issue ASNs. As promised, I’ll now cover BGP route selection, how it enables anycasting, and how we can use it to achieve low latency and high availability. We’ll also cover some of the pitfalls of this approach and how it led to an infamous outage.

    For those not familiar with the concept, anycasting means the same IP address is shared by devices in multiple locations, with routers sending packets to the “nearest” location. This can result in latency lower than that is possible with the speed of light limitation from a single location1. Although, as you will see later, the routers’ concept of “nearest” may not necessarily be what we expect.

    Now, if one location stops announcing the IP address via BGP, then routers will select the next best location, enabling high availability as long as there is one location still available. Somewhat morbidly, I’ve claimed that this website will stay up even if Yellowstone erupts, which is theoretically true since my servers in Europe would still be able to serve traffic to the rest of the world even if every server in North America is down, but I’ve not tested this (and hope it will never be tested).

    Side note: AS200351 turns one year old today! 🎂

    (Read more...)
  • What I wish I knew when I got my ASN

    As you may know, I am currently writing a series on BGP and how the Internet works, from my perspective as the operator of a small autonomous system, AS200351. While we haven’t really exhausted the theoretical material, I think I’ve covered enough to enable readers to set up their own basic autonomous system. Rather than forcing you to do your own research based on outdated and potentially incorrect information on the Internet, or allowing you to fall victim to scams, I think it would be wise to talk about the process of getting your own ASN.

    For readers who haven’t read the previous parts of the series and are unfamiliar with why one might want an ASN, here’s a brief explanation:

    An autonomous system (AS) is a constituent part of the Internet that can define its own routing to the remainder of the Internet, and ASes exchange routes with each other over Border Gateway Protocol (BGP) to form the Internet itself. By receiving a globally unique identifier, an AS number (ASN), which in my case is 200351, I can exchange routes over BGP with other ASes, announce my own IP addresses to the Internet, and control how traffic flows in and out of my network, as opposed to simply exchanging traffic from a default gateway to reach the Internet with an IP address assigned by my ISP. This comes with several advantages, such as being able to switch upstream ISPs at will (or when such an ISP fails) without changing my IP addresses or breaking a single connection; or to advertise the same IP addresses from multiple locations (anycasting) to allow users to reach my services with lower latency than otherwise permissible by the speed of light with automatic failover.

    I will now share what I wish I knew when I impulsively decided to apply for an ASN at 3 a.m. on a cold December night last year, now that I’ve been doing this for a while. I’ll walk through the process as objectively and thoroughly as possible, demystifying the role of any player in this space. I would like you to go into this with full knowledge of the risks and a full understanding of where your money is going. In the end, I will offer some subjective suggestions on providers, but those can be ignored if you would rather do your own research.

    (Read more...)
  • Diving into IP Addresses and Route Authorization

    In the first part of this series, we had a brief overview of what BGP is. Then last time, we dived into what autonomous systems (ASes) are and the relationships that can exist between them, as well as the existence of Tier 1 networks and Internet Exchange Points (IXPs). That provided a broad overview of the Internet’s structure.

    However, so far in this series, we’ve talked about IP addresses—or really, IP prefixes and CIDRs—as if they are something that just exists. This mental model is no longer sufficient. Before we can truly understand routing, we must first understand how IP addresses really work—how they are assigned and who is authorized to announce them.

    (Read more...)
  • Diving into Autonomous Systems of the Internet

    Last time, we introduced BGP as a protocol, but introduced the concept of autonomous systems (AS for short) and gave some examples. This time, we’ll dive deeper into the concept, which hopefully will give you a better understanding of the various types of ASes and how the Internet is organized on a global level.

    But first, let’s start with how the numerical identifiers—the autonomous system numbers (ASNs)—work.

    (Read more...)
  • An Introduction to BGP... from the operator of a small AS

    Border Gateway Protocol (often abbreviated BGP) is a critical protocol that makes the modern Internet possible, yet remains one of its most poorly understood parts even among its long-time users. At the same time, it has played a significant role in several high-profile outages on the Internet. As someone who has been running my “own piece of the Internet”—AS200351—for half a year now, I think the time has come to write a piece explaining exactly what BGP is, what AS200351 is, and how the Internet truly functions behind the scenes. We’ll start with the basics.

    To understand BGP, we must first understand why it is called the “Internet” in the first place. To simplify greatly, the Internet is called that because it’s an interconnected network of networks (more precisely, autonomous systems, or ASes) glued together by BGP. Since this sounds like a nonsensical sequence of words, let’s dive a bit deeper.

    (Read more...)